3.2.54 \(\int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx\) [154]

3.2.54.1 Optimal result
3.2.54.2 Mathematica [C] (warning: unable to verify)
3.2.54.3 Rubi [A] (verified)
3.2.54.4 Maple [A] (verified)
3.2.54.5 Fricas [C] (verification not implemented)
3.2.54.6 Sympy [F(-1)]
3.2.54.7 Maxima [F]
3.2.54.8 Giac [F]
3.2.54.9 Mupad [F(-1)]

3.2.54.1 Optimal result

Integrand size = 35, antiderivative size = 83 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {(A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d}+\frac {(A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{a d}-\frac {(A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{d (a+a \cos (c+d x))} \]

output
(A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2* 
d*x+1/2*c),2^(1/2))/a/d+(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2 
*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d-(A+C)*sin(d*x+c)*cos(d*x+c)^ 
(1/2)/d/(a+a*cos(d*x+c))
 
3.2.54.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.67 (sec) , antiderivative size = 859, normalized size of antiderivative = 10.35 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \left (-\frac {2 (A+C+2 C \cos (c)) \csc (c)}{d}-\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}\right )}{a+a \cos (c+d x)}-\frac {A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}+\frac {C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d (a+a \cos (c+d x)) \sqrt {1+\cot ^2(c)}}-\frac {A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (a+a \cos (c+d x))}-\frac {3 C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{2 d (a+a \cos (c+d x))} \]

input
Integrate[(A + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])) 
,x]
 
output
(Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*((-2*(A + C + 2*C*Cos[c])*Csc[c]) 
/d - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d)) 
/(a + a*Cos[c + d*x]) - (A*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*HypergeometricPFQ 
[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*Sec[d*x - ArcTan 
[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Si 
n[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*( 
a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) + (C*Cos[c/2 + (d*x)/2]^2*Csc[c/2] 
*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 
]*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqr 
t[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcT 
an[Cot[c]]]])/(d*(a + a*Cos[c + d*x])*Sqrt[1 + Cot[c]^2]) - (A*Cos[c/2 + ( 
d*x)/2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d 
*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d* 
x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d 
*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + 
 ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan 
[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + 
 ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(2*d*(a + a*Cos[c + d*x])) - (3*C*C 
os[c/2 + (d*x)/2]^2*Csc[c/2]*Sec[c/2]*((HypergeometricPFQ[{-1/2, -1/4}, {3 
/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sq...
 
3.2.54.3 Rubi [A] (verified)

Time = 0.53 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.07, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 3521, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int \frac {a (A-C)+a (A+3 C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)}}dx}{a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (A-C)+a (A+3 C) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (A-C)+a (A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {a (A-C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+a (A+3 C) \int \sqrt {\cos (c+d x)}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (A+3 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {a (A-C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a (A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {2 a (A-C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a (A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (a \cos (c+d x)+a)}\)

input
Int[(A + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])),x]
 
output
((2*a*(A + 3*C)*EllipticE[(c + d*x)/2, 2])/d + (2*a*(A - C)*EllipticF[(c + 
 d*x)/2, 2])/d)/(2*a^2) - ((A + C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(a 
+ a*Cos[c + d*x]))
 

3.2.54.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
3.2.54.4 Maple [A] (verified)

Time = 5.49 (sec) , antiderivative size = 247, normalized size of antiderivative = 2.98

method result size
default \(\frac {\sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-A E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-C F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 C E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A +2 C \right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-A -C \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(247\)

input
int((A+C*cos(d*x+c)^2)/(a+cos(d*x+c)*a)/cos(d*x+c)^(1/2),x,method=_RETURNV 
ERBOSE)
 
output
((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2* 
c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*Ellipt 
icF(cos(1/2*d*x+1/2*c),2^(1/2))-A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-C* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*C*EllipticE(cos(1/2*d*x+1/2*c),2^( 
1/2)))+(2*A+2*C)*sin(1/2*d*x+1/2*c)^4+(-A-C)*sin(1/2*d*x+1/2*c)^2)/a/cos(1 
/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2 
*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 
3.2.54.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 239, normalized size of antiderivative = 2.88 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=-\frac {2 \, {\left (A + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left (\sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - {\left (\sqrt {2} {\left (i \, A + 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + 3 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - {\left (\sqrt {2} {\left (-i \, A - 3 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - 3 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \]

input
integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorith 
m="fricas")
 
output
-1/2*(2*(A + C)*sqrt(cos(d*x + c))*sin(d*x + c) - (sqrt(2)*(-I*A + I*C)*co 
s(d*x + c) + sqrt(2)*(-I*A + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) - (sqrt(2)*(I*A - I*C)*cos(d*x + c) + sqrt(2)*(I*A - I* 
C))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - (sqrt(2)*( 
I*A + 3*I*C)*cos(d*x + c) + sqrt(2)*(I*A + 3*I*C))*weierstrassZeta(-4, 0, 
weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - (sqrt(2)*(-I* 
A - 3*I*C)*cos(d*x + c) + sqrt(2)*(-I*A - 3*I*C))*weierstrassZeta(-4, 0, w 
eierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + 
c) + a*d)
 
3.2.54.6 Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\text {Timed out} \]

input
integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))/cos(d*x+c)**(1/2),x)
 
output
Timed out
 
3.2.54.7 Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorith 
m="maxima")
 
output
integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))) 
, x)
 
3.2.54.8 Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))/cos(d*x+c)^(1/2),x, algorith 
m="giac")
 
output
integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)*sqrt(cos(d*x + c))) 
, x)
 
3.2.54.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \]

input
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))),x)
 
output
int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))), x)